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Analytical study of coupled two-state stochastic resonators
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The two-state model of stochastic resonance is extended to a chain of coupled two-state elements governed
by the dynamics of Glauber’s stochastic Ising model. Appropriate assumptions on the model parameters turn
the chain into a prototype system of coupled stochastic resonators. In a weak-signal limit, analytical expres-
sions are derived for the spectral power amplification and the signal-to-noise ratio of a two-state element
embedded into the chain. The effect of the coupling between the elements on both quantities is analyzed and
array-enhanced stochastic resonance is established for pure as well as noisy periodic signals. The coupling-
induced improvement of the signal-to-noise ratio compared to an uncoupled element is shown to be limited by
a factor 4, which is only reached for vanishing input noise.@S1063-651X~98!02909-2#

PACS number~s!: 05.40.1j, 05.50.1q
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I. INTRODUCTION

The essential point of stochastic resonance@1# is the fol-
lowing: If a stochastic resonator is subjected to an exte
influence, commonly referred to as the signal, its respo
exhibits signal features, which are most pronounced at a
tain level of noise present in the system. The fascinat
aspect of stochastic resonance is therefore that, counter
itively, an increasing noise level does not steadily deterior
the transmission of the signal through the resonator. On
contrary, noise may rather be used to optimize the transm
sion process@2#.

The implications of these effects are intensively inves
gated. In biological systems, for example, stochastic re
nance apparently plays a role in the neural transmissio
information @3#. From a technical point of view one migh
possibly see the emergence of a novel type of detector
incorporates an optimal amount of noise to perform best
this regard superconducting quantum interference dev
~SQUID’s! have been studied@4#. They may be made to
detect weak magnetic fields reasonably well without
usual costly shielding from environmental noise.

In recent years it was shown that the performance o
single stochastic resonator can be enhanced, if it is em
ded into an ensemble of other stochastic resonators tha
properly coupled@5–9#: Compared to being operated is
lated, the response of the resonator to the signal incre
within the coupled ensemble. However, if the coupling b
comes too strong this response is found to deteriorate ag
Thus in an ensemble of stochastic resonators the coup
strength turns out to be a second design parameter: A
from the noise level, it can be tuned to achieve an optim
performance of the embedded resonator. This effect
calledarray-enhanced stochastic resonance@8#. It will pos-
sibly find technical exploitation and might also be relevant
biological systems, for example, coupled neurons.

The aim of the present paper is a further investigation
the phenomena related to array-enhanced stochastic
nance. To this end we study a simple prototype system
coupled two-state stochastic resonators under periodic m
lation. The model we propose allows us to analytically c
culate the weak-signal limits of two prominent stochast
PRE 581063-651X/98/58~3!/2843~10!/$15.00
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resonance quantities, spectral power amplification~SPA! and
signal-to-noise ratio~SNR!, respectively. Following the con
cept of array-enhanced stochastic resonance, both quan
refer to the response of a resonator as part of the cou
ensemble. The impact of the coupling on both response m
sures will be studied.

There is a close link of the present analysis to the w
presented in@5# and@8#, which to our knowledge is the mos
comprehensive in the field. However, compared to@5#, where
the SPA of a system of globally coupled bistable eleme
was studied analytically, too, the present approach offe
more refined description, since it allows us to avoid a me
field approximation. Compared to@8#, on the other hand
where the SNR of a chain of locally coupled elements w
investigated in a~rather extensive! simulation, the SNR can
now be obtained analytically. For a quick review of the r
sults the reader is referred to the third and fourth passag
the summary section.

From a conceptual point of view the model proposed h
can be seen as an extension of the two-state model devel
by McNamara and Wiesenfeld@10# to study stochastic reso
nance in noisy bistable systems. Instead of considering i
vidual two-state elements as in@10#, these elements are now
arranged in a chain. A simple next-neighbor interaction
introduced that brings the model close to the system stud
in @8#. The interaction is chosen in such a way that the
sulting evolution of the elements is given by Glauber’s s
chastic Ising model@11#. A detailed description of this ap
proach is given in the next section, which also provides
necessary background. We note that the connection to
Glauber model is made for mathematical convenience.
are not concerned with the observation of stochastic re
nance in Ising systems, which was the central theme in@12#
and @13#. Our purpose will also lead to the assumption
Arrhenius-type transition rates of uncoupled unmodulated
ements, which is unusual in the context of Ising systems.
first results of the present analysis were published in@14#.

A further interesting approach to arrays of stochastic re
nators is centered around a response of a more collec
nature. Here stochastic resonance is studied in the sum
output of N resonators, which need not necessarily
coupled @15–17#. Recently, it was shown analytically tha
2843 © 1998 The American Physical Society



ffi

he
je
g
b
d
e

ia
th

bl

n
T

ox
th
b

er
e
-

s
e

, a
ith

e
es

is
nc

t

e
s
is
a

h
io
th
fe

r
the
d
the
oc-
that

as

r
-

the
ents
en-
nts
he

ies

o-
Eq.

ion
gh-
a-

e

th

hus
a

to-

2844 PRE 58UDO SIEWERT AND LUTZ SCHIMANSKY-GEIER
the SNR of this output approaches the input SNR, if a su
ciently large number of uncoupled resonators is used@18#.
Whether in some way coupling may still be beneficial for t
collective response of the present model will be the sub
of a future study. Only the summed output of a very lar
number of resonators will be briefly discussed here. It will
shown that in this case the SNR always deteriorates un
coupling. This indicates that the coupling-induced improv
ment of the performance of stochastic resonators assoc
with array-enhanced stochastic resonance is a local ra
than a global effect.

II. FROM SINGLE TO COUPLED TWO-STATE
STOCHASTIC RESONATORS

An early theory of stochastic resonance in noisy bista
systems with one~generally continuous! variable was
worked out by McNamara and Wiesenfeld@10#. They stud-
ied the effect of a periodic modulation of these systems i
way that is independent of the precise dynamics involved.
this end the behavior of the bistable system was appr
mated by a random telegraph process. For simplicity
process was taken to be symmetric, randomly switching
tween two statess56c. For convenience we shall consid
herec51. The probabilitiesp(s) to find the process in stat
s satisfyp(s)1p(2s)51 and their time-evolution is gov
erned by

ṗ~s!52 ṗ~2s!5W~2s!p~2s!2W~s!p~s!, ~1!

where W(s) denotes the rate of the transitions→2s.
These rates must be extracted from the precise dynamic
hand. To build a theory of stochastic resonance they w
assumed to be approximately given by@10#

W~s!5
a

2
@12sd cos~vt1f!# ~2!

with d being the small parameter of the theory. Obviously
this level the periodic modulation of the bistable system w
~angular! frequencyv and phasef is taken into account by
the cosine term only.

This simple model allows us to calculate the long-tim
limit of the power spectrum of the random telegraph proc
averaged over a uniformly distributed phasef. The spec-
trum consists of a continuous part and ad function at modu-
lation frequencyv. The continuous part of the spectrum
the Lorentzian of the unperturbed process times a freque
dependent prefactor. The latter is close to 1 and governs
modulation-induced transfer of broadband power to thed
peak in the spectrum.

From this spectrum McNamara and Wiesenfeld obtain
their central theoretical result with respect to stochastic re
nance: An exact analytical expression for the signal-to-no
ratio ~SNR! of the two-state process. This SNR is defined
the ratio of the weight of thed function to the continuous
part of the spectrum at modulation frequency. In view of t
present work we will neglect the signal-induced suppress
of the continuous part of the spectrum and consider
linear-response approximation of the McNamara-Wiesen
result with respect to the small parameterd. Doing so, one
finds for the SNR
-
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ad2. ~3!

If the approximation~2! is performed on a particula
noisy bistable system subject to a periodic modulation,
parametersa andd become functions of noise strength an
modulation amplitude, respectively. The dependence of
SNR on the noise intensity can then be studied and the
currence of stochastic resonance may be established for
particular system.

As an example, the overdamped double-well system w
given in @10#. The model equation reads

ẋ5x2x31A cos~vt1f!1A2Dj~ t !, ~4!

where j(t) is Gaussian white noise witĥj(t)&50 and
^j(t)j(t1t)&5d(t). Using a modified Kramers formula fo
the transition rates valid for sufficiently low modulation fre
quencies, McNamara and Wiesenfeld found

a5
A2

p
expS 2

1

4D D , d5
A

D
. ~5!

The central idea of the present work is to pass from
single bistable element to a set of coupled bistable elem
by extending the two-state model of McNamara and Wies
feld. To this end we consider a chain of two-state eleme
that for convenience is taken to be of infinite length. If t
elements interact, the simple gain-loss balance~1! has to be
modified to describe the evolution of the set of probabilit
p(s̄,t) to find the chain in a particular configurations̄
5( . . . ,sk21 ,sk ,sk11 , . . . ) at time t. Introducing a for-
mal operatorFk defined for any functionf (sk) by Fkf (sk)
5 f (2sk), the new gain-loss balance reads

ṗ~ s̄ !5(
k

~Fk21!Wk~sk!p~ s̄ !. ~6!

With the initial conditionp(s̄,t0)5ds̄s̄0
, the p(s̄,t) are in-

terpreted as the transition probabilitiesp(s̄,tus̄0 ,t0) of a
Markovian process with infinitely many discrete comp
nents. The statistics of the process is fully determined by
~6!.

To introduce interactions we assume that the transit
rates~2! of an element depend on the states of its next nei
bors. A simple choice for this coupling controlled by a p
rameterg is

Wi~s i !5W~s i !F12
g

2
~s i 211s i 11!s i G , ~7!

where W(s i) is the McNamara-Wiesenfeld rate~2!. With
positive g, neighboring elements prefer to be in the sam
state, whereas they tend to be in opposite states ifg is nega-
tive. Both tendencies grow with growing coupling streng
ugu. To avoid negative transition ratesugu<1 has to be re-
quired. We note that the assumed type of coupling is t
able to model ferromagnetic-type interactions for which
coupling-induced improvement of the performance of s
chastic resonators was found in@5# and @8#. For positiveg,
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PRE 58 2845ANALYTICAL STUDY OF COUPLED TWO-STATE . . .
the present model is particularly close to the model simula
in @8#, since both are linear arrays of next-neighbor-coup
elements. For convenience we shall often use the terms
romagnetic or antiferromagnetic coupling instead of co
pling with positive or negativeg.

Of course, other types of transition rates~7! could be
considered as well. The advantage of the present choic
that most of the relevant stochastic properties of the resul
model are already known. They were studied by Glaub
who introduced this model as a stochastic form of the Is
model @11#. @We note that in the Glauber model the ter
d cos(vt1f) in Eq. ~7! is replaced by a general time
dependent parameterb.] As in the McNamara-Wiesenfeld
model, it is again possible to find an analytical expression
the SNR in leading order of the modulation parameterd,
which is the subject of the next section. The respect
analysis is essentially an exploitation of Glauber’s work.

It may be possible to reduce the dynamics of so
coupled systems to the two-state model given by Eqs.~6! and
~7! and hence to directly employ the SNR formula derived
the next section. However, this approach is certainly m
involved than the rate expansion~2! needed to make use o
the McNamara-Wiesenfeld SNR. We shall not pursue t
more general aspect of the model in further detail. Instead
are interested in devising a simple prototype system tha
lows us to study the impact of the coupling on the stochas
resonance effect. To this end we are looking for simple
sumptions on the dependence of the model parametera, g,
andd on some noise intensity and signal amplitude, resp
tively. We proceed in two steps.

First, we retain Glauber’s original relation of the prese
model to the Ising model given by the Hamiltonian

H52J(
k

sksk112mH(
k

sk . ~8!

This relation is defined by an assumption on the probab
p(sk) to find thekth element in statesk , if all other ele-
ments are fixed: In an adiabatic limit thep(sk) of both mod-
els are to be identical. This implies that

p~sk!

p~2sk!
5

Wk~2sk!

Wk~sk!
5expS 2

H~sk!2H~2sk!

kT D ~9!

holds, which allows us to establish a relation between
parameters of both models. One findsg5tanh(2J/kT) and
d cos(vt1f)5tanh(mH/kT), respectively@11#. The role of
the noise intensity is thus played by the temperatureT. To
skip unnecessary parameters we setk51 andm51. In the
present paper we assume thatH, which shall be referred to
as the signal, is given by

H5H0 cos~vt1f!. ~10!

For weak amplitudesH0!T this results ind5H0 /T. @In
Sec. V we shall also consider periodic signals~10! with an
additional noisy background.#

Second, a plausible assumption has to be made on
temperature dependence of the time-scale parametea,
which is not affected by requiring Eq.~9!. It is assumed tha
it retains the qualitative dependence~5! found by McNamara
and Wiesenfeld for the double-well system, i.e.,a
d
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5a0 exp(21/T) with properly scaled temperatureT. This
dependence is typical for many rate processes@19#. An ap-
propriate temperature dependence ofa is also necessary to
turn the elements into stochastic resonators for vanish
coupling. For simplicitya051 is considered.

The prototype system we are looking for is thus specifi
by Eqs.~6! and ~7! together with

a5expS 2
1

TD , g5tanhS 2J

T D , d5
H0

T
. ~11!

We emphasize that this system is not an approximation
the Ising system~8! in the same way as the double-we
system~4! is approximated by Eqs.~1!, ~2!, and~5!, respec-
tively. The devised prototype system appears to capture
simple way the essence of the effect of coupling and forc
on coupled continuous-variable systems such as the do
well.

To motivate this, letDU(s) denote the height of the bar
rier to be surmounted in order to escape from states. In a
very simple approximation the effect of next-neighbor co
pling and forcing on the barrier height could be modeled

DU~sk!5DU01DUadd~sk!,
~12!

DUadd~sk!5Jsk~sk111sk21!1H0sk cos~vt1f!.

Comparing this to Eq.~8! one finds that within this simple
picture the effect of coupling and forcing on the barri
heights is the same as their effect on the energy levels of
Ising model.~We note that for coupled double-well system
the chosen approximation would only hold for weak co
pling. For strong coupling the systems may no longer
bistable and the entire concept of a simple-minded two-s
approximation breaks down.!

Within an adiabatic limit and with some noise strengthT
the transition rateW(sk) of the barrier system would
roughly read

W~sk!5expS 2
DU0

T DexpS 2
DUadd~sk!

T D . ~13!

From here rates of the form~7! together with parameters~11!
can be obtained in two steps. First, the factor related toDU0
is kept as the parametera with a respective choice ofDU0 .
Second, the factor related toDUadd, which describes the
effect of forcing and coupling, is replaced by the respect
term of Eq. ~7!, which is easier to handle. A connectio
between both types of rates is again made by requiring
they lead to identical stationary distributions in the sense
Eq. ~9!.

A particular close relation between the Glauber-dynam
model and the barrier system should thus arise within
regime of quasistatic response. Nevertheless, we shall
restrict the following investigation of the simple prototyp
system to the quasistatic regime. Whether or not the s
gested model provides insights that are also relevant to m
realistic settings and possibly helpful in the design
coupled stochastic resonators remains to be seen.
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III. ANALYTICAL SOLUTIONS

The aim of this section is to calculate the SNR of t
response of a two-state element embedded into the cha
coupled elements given by Eqs.~6! and~7!. This calculation
will be done in terms of the parametersa, g, andd and is
essentially based on Glauber’s work. We shall only take
count of terms in leading order of the modulation amplitu
d. The resulting SNR will then be an extension of the si
plified McNamara-Wiesenfeld result~3!. At the end of the
section the general result will be applied to the prototy
system specified by Eq.~11!. In addition to the SNR we shal
also give an analytical expression for the so-called spec
power amplification~SPA!.

Following Glauber, we start by calculating the averag
^sk(t)&. From Eq. ~6! one derives d^sk&/dt5
22^skWk(sk)&. It results in

d^sk&
d~at !

52^sk&1
g

2
@^sk21&1^sk11&#

1F12
g

2
~r k21,k1r k,k11!Gd cos~vt1f! ~14!

with r i , j (t)5^s i(t)s j (t)&. A closed set of equations for th
^sk(t)& is found by linearizing Eq.~14! in d. In this case the
r i , j can be taken from the unperturbed model (d50). After
long times theser i , j read r i , j5h u i 2 j u with h5g21(1
2A12g2) @11#.

The resulting long-time-limit set of equations can be fu
ther simplified. Since all elements are forced uniformly
particular element cannot be distinguished from any oth
once the initial distribution has been forgotten. Hence,
elements will have identical statistics and the indices in
~14! can be skipped. Together with the previous assump
one obtains

d^s&
dt

52a~12g!^s&1aA12g2d cos~vt1f!. ~15!

Obviously, the long-time dynamics of the average^s& is
identical to the long-time dynamics of the average of an
coupled element with rescaled relaxation ratea(12g) and
rescaled modulation termaA12g2d. The resulting long-
time limit of the averaged state simply reads

^s~ t !&5q cos~vt1f1c!,
~16!

q5qsS 11
v2

a2~12g!2D 2 1/2

, tanc52
v

a~12g!
,

whereqs is the response to static signals (v50):

qs5dA11g

12g
. ~17!

Formally this static response might even exceedqs51. We
conclude that in this cased is not sufficiently small and the
linearization of Eq.~14! is no longer justified. Later on it will
be shown that this does not amount to a considerable res
tion.
of
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The power spectrum of an element is determined from
average^sk(t)sk(t1t)&. As in @10#, its t dependence is
removed by averaginĝ &f over a uniformly distributed ini-
tial phasef of the modulation term in Eq.~7!. Introducing
the correlation functionckk(t,t)5Š@sk(t)2^sk(t)&#@sk(t
1t)2^sk(t1t)&#‹ one finds

Š^sk~ t !sk~ t1t!&‹f5^ckk~ t,t!&f1
q2

2
cos~vt!. ~18!

The second term on the right-hand side contributes ad func-
tion with weight pq2 at signal frequencyv to the ~one-
sided! power spectrum as defined below. The first term,
the other hand, forms the continuous part of the spectrum

For the purpose of calculating the SNR in leading order
the modulation amplituded it is sufficient to approximate
this continuous part by the power spectrum of the unp
turbed model. This implies that we neglect any possi
signal-induced transformation of the continuous part of
spectrum as we did to obtain the simplified McNama
Wiesenfeld result~3!. For the unperturbed model the long
time correlation functionc(t) is not affected by the averag
^ &f . It also no longer depends on the index of the eleme
According to Glauber,c(t) reads

c~t!5e2autu (
n52`

1`

h unuI n~agutu! ~19!

with modified Bessel functionsI n(agutu). Using the relation
@20#

E
0

1`

e2axI n~bx!dx5
1

Aa22b2S b

a1Aa22b2D n

, ~20!

which holds for Re(n).21 and Re(a).uRe(b)u, the power
spectrums(V)52*0

1` cos(Vt)c(t)dt is calculated. For the
one-sided spectrum defined byS(V)5s(V)1s(2V) at V
.0 we eventually obtain

S~V!54 ReS 11hs2

s1~12hs2! D ~21!

with s15A(a1 iV)22(ag)2 ands25ag(a1 iV1s1)21.
Now the SNR of the response of a two-state element e

bedded into the chain can be calculated, which is the cen
result of this section. It reads

R* 5
pq2

S~v!
. ~22!

For vanishing coupling it reduces to the simplifie
McNamara-Wiesenfeld result~3!.

In addition to the effect of the coupling on the SNR, w
also wish to study its impact on thed peak in the power
spectrum. In this regard the spectral power amplificat
~SPA! is a convenient measure~cf., e.g., Jung in@2#!. It is
defined as the ratio of power contained in the signal peak
output to input spectrum, i.e., the ratio of the weights of t
respectived functions. Because of its dependence on the
put spectrum, the SPA depends on the precise dynamic
be modeled by the two-state chain.
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For the prototype system specified by Eq.~11!, the SPA
readsr5(q/H0)2, or explicitly

r5rsS 11

v2 expS 2

TD
F12tanhS 2J

T D G2D 21

, ~23!

rs5
1

T2
expS 4J

T D , ~24!

wherers is the SPA of static signals. Obviously, the SPA
longer depends on the signal amplitudeH0 . For convenience
we also remove theH0 dependence of the SNR by conside
ing

R5
pq2

H0
2S~v!

5
pr

S~v!
. ~25!

For the prototype system the parameterh involved in the
unperturbed spectrum~21! simplifies toh5tanh(J/T) @11#.

Both quantities, SPA~23! and rescaled SNR~25!, only
depend on three parameters: temperatureT, coupling
strengthJ, and signal frequencyv. Restrictions arise from
H0!T, which lead to a simple expression ford, as well as
from the linearization of Eq.~14!, which results in an uppe
bound ond as discussed in connection with Eq.~17!. To-
gether one finds

H0!min„T,T exp~22J/T!…. ~26!

It implies that finiteH0 places a lower bound onT and an
upper bound onJ. However, these restrictions are rath
weak: H0 can be made arbitrarily small because its size
immaterial within the present weak-signal approximation

We are now in a position to study the impact of the co
pling on the response measures SPA and SNR of a si
resonator embedded into the chain. This will be the sub
of the following two sections.

IV. COUPLING AND SPECTRAL
POWER AMPLIFICATION

The SPA~23! has a unique maximum over temperatureT
and coupling parameterJ for any time-dependent signal~10!.
The maximum SPA is obtained for a frequency-depend
valueJmax, which is always positive. In other words, a pro
erly tuned ferromagnetic-type coupling yields the best S
performance of the two-state resonator element, which is
bedded into the chain.

For our simple model this maximum can be studied a
lytically. The partial derivatives of the SPA with respect toT
andJ are found to vanish at pairs (Tmax,Jmax) given by

Jmax52~Tmax/4!ln~2Tmax21! ~27!

and

v25expS 2
2

Tmax
D ~2Tmax21!2

Tmax~12Tmax!
, ~28!
s

-
le

ct

nt

A
-

-

respectively. ForJmax to be real and finite,Tmax.1/2 has to
hold. With this restriction, Eq.~28! has a unique solution
1/2,Tmax,1 for any givenv.0. The correspondingJmax is
found via Eq.~27!. Within the given range ofTmax one can
easily check on Eq.~27! that Jmax is indeed always positive
An inspection of the second derivatives of the SPA fina
reveals that there is a maximum at (Tmax,Jmax). Its peak
value is implicitly given by

rmax5
12Tmax

Tmax
2 ~2Tmax21!

. ~29!

From Eqs.~27!, ~28!, and ~29! the following features of
the maximum can be derived, which are shown in Fig.
Tuning the signal frequencyv from very large to vanishing
small values, the temperatureTmax falls from 1 to 1/2. At the
same time, the coupling strengthJmax as well as the peak
heightrmax increase from vanishing small to very large va
ues. In addition, an analysis of the curvaturesrJJ andrTT ,
both expressed in terms ofTmax, shows that the sharpness
the maximum grows as its height increases. This indica

FIG. 1. Features of the unique maximum of the SPAr over
temperatureT and coupling strengthJ shown in dependence on th
signal frequencyv. Plotted are the position (Tmax, Jmax) of the
maximum, its heightrmax, and the sharpness of the maximum e
pressed by the curvaturesrTT and rJJ , respectively. In the un-
coupled model (J50) the SPA has a maximum atT0 with a height
r0 .
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that to achieve optimal performance the system parameteT
andJ have to be tuned with increasing accuracy as the sig
frequency decreases.

Figure 1 also includes a comparison to the SPA of
uncoupled element. At givenv.0, this SPA has a maximum
located at a temperatureT0 , implicitly given by

v25expS 2
2

T0
D T0

12T0
~30!

on the interval 0,T0,1, whereby its peak value is found t
ber05(12T0)/T0

2. It can be shown from Eqs.~28! and~30!
thatTmax always exceedsT0 . The fact thatJmax was found to
be never zero also implies thatrmax always exceedsr0 .
However, looking at Fig. 1 it is obvious that at frequenc
v.1 both compared quantities of the coupled element
proach those of the uncoupled one andJmax approaches zero
The coupling-induced increase in the SPA is thus van
ingly small at sufficiently high frequencies of the signal.

This comparison allows us to distinguish between t
different types of SPA behavior: At low frequencies the SP
is enhanced under ferromagnetic coupling, whereas at
frequencies it is basically not, although a tiny increase s
occurs. Both situations are illustrated at selected frequen
in Fig. 2 and Fig. 3, respectively. The low-frequency SP
exactly reproduces the qualitative effect found analytica

FIG. 2. Typical qualitative behavior of the SPAr at low signal
frequencies for various values of coupling strengthJ ~top! and tem-
peratureT ~bottom!. Dashed and dotted curves correspond to S
limits discussed towards the end of this section. The dash-do
curves represent the SPA at optimal coupling.
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by Junget al. @5# in a system of globally interacting ele
ments. The high-frequency behavior, on the other ha
where the SPA practically does not increase under coupl
has not to our knowledge been reported before.

In both cases Fig. 2 and Fig. 3 clearly demonstrate tha
fixed coupling parameterJ stochastic resonance occurs: T
SPA has a maximum over temperatureT that, unfortunately,
cannot be established analytically. Figure 2~bottom! shows
that while ferromagnetic coupling improves the SPA at a
fixed temperatureT, this improvement is lost if the coupling
becomes too strong. There is thus an optimal coupl
strengthJopt(T) for every given temperature, which can eve
be exactly calculated at anyv.0. One finds

Jopt~T!5
T

2
arctanhS 11

1

2

v2

a2
2

1

2

v

a
A41

v2

a2D ,

~31!

which is always positive. Since the SPA does not hav
further extremum overJ, it implies that antiferromagnetic
coupling always decreases the SPA. Moreover,Jopt(T) in-
creases with growing temperatureT and decreases as th
signal frequency grows. In Fig. 2, the SPA at the optim
coupling strength is included~dash-dotted curves!. In Fig. 3
~bottom!, where the high-frequency SPA is illustrated, t
coupling-induced improvement of the SPA is hardly dete
able andJopt(T) is almost zero.

ed

FIG. 3. Typical qualitative behavior of the SPAr at high signal
frequencies for various values of coupling strengthJ ~top! and tem-
peratureT ~bottom!.



al

il-
s
a
s

of
e

en
a

ic

lin

ns

-
h

e
at
e

e

ca
na

t
f

y
-
ia

he
te
d

at
fe
th
ta

r,
the

d,
his

se in

m-

s,
or
ean

re-

r
iled

,
der
ot.
ts
o

R
er-

r.
imu-
e
or
our

in
of

For

re-
es
NR

PRE 58 2849ANALYTICAL STUDY OF COUPLED TWO-STATE . . .
Considering the SPA of time-independent sign
(v50) given by Eq.~24!, one finds that it has a maximum
over temperature for antiferromagnetic couplingJ,0 only,
whereby it decreases as the coupling strengthuJu grows. For
J>0 the SPA increases with increasingJ as well as with
decreasingT. It formally diverges forT→0 andJ→`, re-
spectively. In both cases the weak-signal limit~26! breaks
down.

In general, the SPA~23! is given by its static value~24!
times a dynamical factor (11d2)21 @cf. Eq. ~16!#. Hered is
the ratiod5v/@a(12g)# of signal frequency to long-time
relaxation rate, which also governs the phase shiftc in Eq.
~16!. With growingd the elements gradually lose their ab
ity to follow the signal: The SPA weakens and the pha
shift grows. This effect occurs, for example, if the sign
frequency v increases. Subsequently, the SPA decrea
with growing v.

The impact ofd is also responsible for the occurrence
stochastic resonance and optimal coupling in the SPA. H
a decrease of the long-time relaxation ratea(12g) plays the
crucial role: The element’s dynamics slows down asJ in-
creases or asT decreases. Thus this slow-down occurs wh
ever the static SPA grows. Hence, the dynamical factor
ways counteracts the static SPA asT or J is changed.
Eventually, the increase of the monotonous static SPA
outperformed by the decrease of the dynamical factor, wh
results in a maximum of the SPA overT andJ, respectively.
In other words, stochastic resonance and optimal coup
occur.

As illustrated in Fig. 2, the SPA can be seen as a tra
tion between two limits, the static SPA given byrs
5(qs /H0)2 (d!1, dashed curves! andrs /d2 (d@1, dotted
curves!, respectively. Since both limits intersect atd51, i.e.,
at v5a(12g), the plots nicely show the well-known ap
proximate matching of time scales at the SPA peak. T
matching not only occurs overT ~Fig. 2, top!, but overJ
~Fig. 2, bottom!, too. If the signal frequency is changed, th
peaks of the SPA shift, whereby all curves share the st
SPA as a limit. This results in the qualitative frequency d
pendence found by McNamara and Wiesenfeld for thed-
function part of the spectrum of the double-well system~4!.

Roughly speaking, an improvement of the SPA under f
romagnetic coupling only occurs atd,1, where the impact
of the static SPA is not yet outperformed by the dynami
factor. This explains why there is no improvement at sig
frequenciesv@1: Since under ferromagnetic couplinga(1
2g)<1 holds, d,1 cannot be fulfilled in this case. A
v510 ~Fig. 3!, the SPA is already within the linewidth o
the limit rs /d25a2(12g2)(vT)22, where the impact of
the dynamical factor prevails. This limit is basically given b
the modulation term in Eq.~15!. Its nonmonotonous tem
perature dependence is known to be no longer assoc
with a matching of time scales@10#.

The static response, which is thus the origin of t
coupling-induced enhancement of the SPA, can be in
preted as follows. Without coupling and for a given fixe
signal, the two-state elements prefer to be in the state
lowest energy~8!. Since the signal is homogeneous, this st
is the same for all elements. Without a signal but under
romagnetic coupling, neighboring elements tend to be in
same state, too, although they do not favor a particular s
s
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11 or 21. Taking now the signal and coupling togethe
both effects add up. The tendency to find the elements in
state favored by the signal grows and henceqs and the static
SPA grow compared to the uncoupled case.

With antiferromagnetic coupling, on the other han
neighboring elements prefer to be in opposite states. T
counteracts the effect of the signal and leads to a decrea
the SPA.

Finally, the decrease of the static SPA with growing te
perature directly follows from Eq.~9!. There the imbalance
in the distribution of probability between the two state
which depending on the view taken either differ in energy
barrier height, decreases as the system heats up: The m
responseqs weakens due to increasing fluctuations.

V. COUPLING AND SIGNAL-TO-NOISE RATIO

The investigation of the SNR presented here basically
lies on numerical evaluations of Eq.~25!. An explicit calcu-
lation of the power spectrum~21! already yields a rathe
complicated expression that does not lend itself to a deta
analytical study.

At finite signal frequenciesv.0 the SNR displays the
same qualitative dependence on temperatureT and coupling
parameterJ as shown for the SPA in Fig. 2 and Fig. 3
respectively. At low frequencies the SNR is enhanced un
ferromagnetic coupling, whereas at high frequencies it is n
Due to this close similarity we omitted the respective plo
for the SNR. We note, however, that this similarity is by n
means a trivial result, since the spectrum~21! is itself a non-
monotonous function ofT andJ.

The low-frequency SNR qualitatively reproduces the SN
behavior found in a chain of next-neighbor-coupled ov
damped double-well systems simulated in@8#. To our knowl-
edge, it is the first analytical confirmation of this behavio
We note that this correspondence occurs although the s
lation in @8# was performed with strong forcing while th
present model is studied within a weak-signal limit. As f
the SPA, the high-frequency behavior of the SNR has to
knowledge not been reported before.

If the elements are not coupled, their SNR~3! does not
depend on the signal frequency. This was already found
@10#, if the signal-induced reduction of the continuous part
the spectrum is neglected, as Eq.~3! clearly shows. Under
coupling this frequency independence of the SNR is lost.
ferromagnetic coupling, numerical evaluations of Eq.~25!
predict a decrease of the SNR with growing signal f
quency. Only in the limit of low and high frequencies do
the SNR approach constant values. In both cases the S
formula ~25! simplifies significantly. One finds

Rs5R0~11g!25R0F tanhS 2J

T D11G2

, ~32!

RHF5R0A12g25R0 cosh21S 2J

T D , ~33!

whereR0 is the simplified McNamara-Wiesenfeld SNR~3!
of uncoupled elements.Rs is the static SNR whileRHF rep-
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resents the leading-order term of its high-frequency exp
sion. Figure 4 illustrates the typical qualitative behavior
the SNR as a function of the signal frequency. At vario
frequencies it shows a set of SNR curves over temperatuT
and coupling parameterJ, respectively. The dashed curve
representRs andRHF, respectively.

The apparent fact that the SNR decreases with grow
signal frequency implies that its static value cannot be
ceeded at any other signal frequency. Then it follows imm
diately from Eq.~32! that the coupling-induced enhanceme
of the SNR possesses an upper limit: It cannot be better
a factor 4. This is a rigorous result for the general ch
model and not limited to the prototype system, where a s
cial choice of the parameters was made. Due to the simp
ity of the chain model this result may well reflect a limit of
more general nature for the improvement of a weak-sig
SNR. Figure 5 shows the static SNR over temperatureT. It
differs qualitatively from the static SPA, which according
Eq. ~24! has a monotonous behavior.

Turning briefly to antiferromagnetic coupling, one find
that the continuous part of the spectrum is insensitive
the sign of the coupling parameterJ. Now even the static
SNR decreases under coupling. As shown in Fig. 4~bottom!,
it is found below the high-frequency SNR curve, i.e
here the SNR increases with growing signal frequen
Since at medium frequencies again a transition occurs
tween both curves similar to the transition in Fig. 4~top!,

FIG. 4. The frequency dependence of the SNRR. The upper
dashed curves represent the static SNR. The lower dashed c
show the high-frequency expansion of the SNR.
n-
f
s

g
-
-

t
an
n
e-
c-

al

o

.
e-

a second maximum in the SNR overT may emerge in this
situation.

The investigation of the impact of the coupling on th
SNR can also be extended to the more natural situat
where the signal itself is embedded into noise. The ques
to address is whether the improvement of the SNR, wh
was established for independent internal noise sources,
still be found with additional coherent external noise.~This
problem does not occur for the SPA, where only the hei
of the signal peak is of interest.!

To study this case, it is assumed that the input spect
consists of the previous signal peak described bypH0

2d(V
2v) and a noise partN(V). Within the weak-signal limit it
was shown that the signal peak of the input spectrum lead
a respective peak in the output spectrum at signal freque
only: No additional peaks at multiples of that frequency o
cur. Therefore, any additional contribution to the continuo
part of the output spectrum at signal frequency can only a
from N(V5v). In analogy to Eq.~16!, one finds that this
additional contribution is given by (q/H0)2N(v).

Together with Eq.~25!, the resulting SNRRnoisy reads,
again in units ofH0

2,

Rnoisy5
pq2

H0
2S~v!1q2N~v!

. ~34!

It can be expressed in terms of the SNRR @cf. Eq. ~25!# and
the input SNRRinput5p/N(v) written in units of H0

2, re-
spectively. One finds

1

Rnoisy
5

1

R
1

1

Rinput
. ~35!

Rnoisy is thus a steadily growing function of the previous
studied SNRR, whereby it cannot exceed the input SN
Rinput. ~The latter meanwhile is a well-known result of line
response theory@18#, which is in fact the limit we are taking
here.! SinceRinput is constant at fixed signal frequencyv, a
coupling-induced increase ofR will lead to an increase
in Rnoisy, too. The improvement of the SNR under couplin
is thus preserved with external coherent noise. From Eq.~35!
one can easily show that the maximum enhancemen

ves

FIG. 5. Static SNRR for various values of the coupling param
eterJ. The SNR atJ510 is within the linewidth of the amplifica-
tion limit 4R0 .
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Rnoisy compared to the uncoupled chain reaches the
viously found factor 4 for vanishing input noise onl
In general, this factor is smaller approaching 1 if the inp
noise is so strong that the input SNR and henceRnoisy go
to zero.

At the end we shall make a brief excursion to the colle
tive response of the chain, which was mentioned in the
troduction. We consider the following sum, which involv
the states ofN elements:

M ~ t !5(
i

N

s i~ t !. ~36!

It is not difficult to show that the SPA of this new quantity
simply N2 times the previously studied SPA~23!. For the
SNR, however, this new situation is completely differe
Previously the continuous part of the spectrum was de
mined from the autocorrelation functionckk(t,t) of an ele-
ment alone@cf. Eq. ~18!#. Now this spectrum will involve
cross-correlation contributionscjk(t,t) of different elements
j Þk, too.

The new contributions to the continuous part of the sp
trum change the qualitative behavior of the SNR under c
pling. We will demonstrate this in the limitN→`. For this
case Glauber calculated the unperturbed spectrum@11#,
which reads in its one-sided version

SM~V!5N
4aA12g2

a2~12g!21V2
. ~37!

Inserting this spectrum into Eq.~25!, multiplied byN2 due to
the mentioned increase of the SPA, one finds for the n
SNR per element

RM5
p

4
aA12g2d2, ~38!

which, of course, again reduces to the simplified McNama
Wiesenfeld SNR~3! for vanishing coupling.

Clearly, the SNR is now a decreasing function of the co
pling parameter and the sign of the latter is no longer imp
tant. Hence, there is a drastic difference in the SNR of sin
and collective response with respect to coupling. Of cou
we have so far merely investigated the limits of Eq.~36!,
N51 andN→`, respectively. We expect that the SNR
the collective response of only a few elements still increa
under coupling@16#. A detailed analysis of the present mod
with respect to these collective effects will be the subject
a further investigation.
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VI. SUMMARY

In this paper we extended the two-state model of s
chastic resonance introduced by McNamara and Wiesen
to a chain of infinitely many coupled two-state elemen
which are periodically modulated. The interaction of the
ements was chosen in such a way that the chain evo
according to Glauber’s stochastic Ising model. In analogy
the work of McNamara and Wiesenfeld and based on Gla
er’s results, analytical expressions for the signal-to-noise
tio ~SNR! and the spectral power amplification~SPA! have
been obtained in the limit of weak modulations. Here bo
quantities refer to the response of a single element as pa
the chain.

Instead of approximating the dynamics of a particu
coupled system by the chain model, we used the latte
build a prototype system that hopefully captures the esse
features of an entire class of coupled stochastic resona
To this end additional assumptions were made on the de
dence of the model parameters on some noise intensity
signal amplitude, respectively. The prototype system w
used to study the effect of the coupling on the response
single resonator embedded into the chain.

The results show that array-enhanced stochastic reson
occurs for ferromagnetic-type coupling in SPA and SN
The qualitative features of the effects reproduce those pr
ously found in coupled stochastic resonators. The simplic
of the chain model allowed for a detailed analytical inves
gation of the SPA. For the SNR the observed effects h
been confirmed analytically. In addition, it was found th
the improvement of the single-resonator response comp
to the response of the uncoupled resonator still occurs, if
signal is embedded into noise. For the SNR this impro
ment was shown to be limited by a factor 4, which is reach
for vanishing input noise only. A brief excursion into th
collective response ofN resonators, on the other hand, di
closed that coupling cannot improve the SNR, ifN is very
large.

A closer look at the mechanisms behind the effects
vealed that in the present model an improvement of the
chastic resonators under coupling is associated with the
gime of quasistatic response. Since the model studied
possesses an upper bound to the time scale of its dynam
the desired improvement is essentially restricted to su
ciently slow signals. For the SPA this improvement is bas
on a stronger tendency of the two-state elements to alig
parallel, if signal and ferromagnetic coupling act togeth
compared to this tendency caused by the signal alone.
reason why the improvement of the SPA is lost, if the co
pling is too strong, was found to be the slow-down of t
system dynamics under coupling: It simply prevents
resonators from responding quasistatically.
.
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