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The two-state model of stochastic resonance is extended to a chain of coupled two-state elements governed
by the dynamics of Glauber’s stochastic Ising model. Appropriate assumptions on the model parameters turn
the chain into a prototype system of coupled stochastic resonators. In a weak-signal limit, analytical expres-
sions are derived for the spectral power amplification and the signal-to-noise ratio of a two-state element
embedded into the chain. The effect of the coupling between the elements on both quantities is analyzed and
array-enhanced stochastic resonance is established for pure as well as noisy periodic signals. The coupling-
induced improvement of the signal-to-noise ratio compared to an uncoupled element is shown to be limited by
a factor 4, which is only reached for vanishing input no[&1063-651X98)02909-2

PACS numbds): 05.40:+j, 05.50+q

[. INTRODUCTION resonance quantities, spectral power amplificat®®A) and
signal-to-noise rati¢SNR), respectively. Following the con-
The essential point of stochastic resonafitkeis the fol-  cept of array-enhanced stochastic resonance, both quantities
lowing: If a stochastic resonator is subjected to an externalefer to the response of a resonator as part of the coupled
influence, commonly referred to as the signal, its responsensemble. The impact of the coupling on both response mea-
exhibits signal features, which are most pronounced at a cesures will be studied.
tain level of noise present in the system. The fascinating There is a close link of the present analysis to the work
aspect of stochastic resonance is therefore that, counterintpresented ii5] and[8], which to our knowledge is the most
itively, an increasing noise level does not steadily deteriorateomprehensive in the field. However, comparefBlpwhere
the transmission of the signal through the resonator. On ththe SPA of a system of globally coupled bistable elements
contrary, noise may rather be used to optimize the transmiswvas studied analytically, too, the present approach offers a
sion proces$2]. more refined description, since it allows us to avoid a mean-
The implications of these effects are intensively investi-field approximation. Compared t@], on the other hand,
gated. In biological systems, for example, stochastic resowhere the SNR of a chain of locally coupled elements was
nance apparently plays a role in the neural transmission dfivestigated in grather extensivesimulation, the SNR can
information [3]. From a technical point of view one might now be obtained analytically. For a quick review of the re-
possibly see the emergence of a novel type of detector thaults the reader is referred to the third and fourth passage of
incorporates an optimal amount of noise to perform best. Irihe summary section.
this regard superconducting quantum interference devices From a conceptual point of view the model proposed here
(SQUID’S) have been studief4]. They may be made to can be seen as an extension of the two-state model developed
detect weak magnetic fields reasonably well without theby McNamara and Wiesenfe[d O] to study stochastic reso-
usual costly shielding from environmental noise. nance in noisy bistable systems. Instead of considering indi-
In recent years it was shown that the performance of aidual two-state elements as [ih0], these elements are now
single stochastic resonator can be enhanced, if it is embeeranged in a chain. A simple next-neighbor interaction is
ded into an ensemble of other stochastic resonators that aigtroduced that brings the model close to the system studied
properly coupled5—-9]: Compared to being operated iso- in [8]. The interaction is chosen in such a way that the re-
lated, the response of the resonator to the signal increaseslting evolution of the elements is given by Glauber’s sto-
within the coupled ensemble. However, if the coupling be-chastic Ising mode[11]. A detailed description of this ap-
comes too strong this response is found to deteriorate agaiproach is given in the next section, which also provides the
Thus in an ensemble of stochastic resonators the couplingecessary background. We note that the connection to the
strength turns out to be a second design parameter: Apa@lauber model is made for mathematical convenience. We
from the noise level, it can be tuned to achieve an optimahre not concerned with the observation of stochastic reso-
performance of the embedded resonator. This effect wasance in Ising systems, which was the central thend 2h
calledarray-enhanced stochastic resonarf@. It will pos-  and[13]. Our purpose will also lead to the assumption of
sibly find technical exploitation and might also be relevant toArrhenius-type transition rates of uncoupled unmodulated el-
biological systems, for example, coupled neurons. ements, which is unusual in the context of Ising systems. The
The aim of the present paper is a further investigation ofirst results of the present analysis were publishefL#.
the phenomena related to array-enhanced stochastic reso-A further interesting approach to arrays of stochastic reso-
nance. To this end we study a simple prototype system ofiators is centered around a response of a more collective
coupled two-state stochastic resonators under periodic modmature. Here stochastic resonance is studied in the summed
lation. The model we propose allows us to analytically cal-output of N resonators, which need not necessarily be
culate the weak-signal limits of two prominent stochastic-coupled[15—17. Recently, it was shown analytically that
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the SNR of this output approaches the input SNR, if a suffi- T
ciently large number of uncoupled resonators is U] Ro=za5 . 3
Whether in some way coupling may still be beneficial for the
collective response of the present model will be the subject | the approximation(2) is performed on a particular
of a future study. Only the summed output of a very largengjsy bistable system subject to a periodic modulation, the
number of resonators will be briefly discussed here. It will beparametereu and & become functions of noise strength and
shown that in this case the SNR always deteriorates undgpogulation amplitude, respectively. The dependence of the
coupling. This indicates that the coupling-induced improve-sNR on the noise intensity can then be studied and the oc-
ment of the performance of stochastic resonators associatedhrrence of stochastic resonance may be established for that
with array-enhanced stochastic resonance is a local rathepticular system.
than a global effect. As an example, the overdamped double-well system was
given in[10]. The model equation reads
IIl. FROM SINGLE TO COUPLED TWO-STATE

STOCHASTIC RESONATORS X=X—x3+A cod wt+ ¢)+ 2D (L), (4)

An early theory of stochastic resonance in noisy bistabl
systems with one(generally continuoys variable was
worked out by McNamara and Wiesenfdlt0]. They stud-
ied the effect of a periodic modulation of these systems in
way that is independent of the precise dynamics involved. T

Svhere £(t) is Gaussian white noise witkié(t))=0 and
(&(t)é(t+ 7)) = 8(7). Using a modified Kramers formula for
the transition rates valid for sufficiently low modulation fre-
?uencies, McNamara and Wiesenfeld found

this end the behavior of the bistable system was approxi- 2 1 A
mated by a random telegraph process. For simplicity this a=— exp — —) =—_, (5)
process was taken to be symmetric, randomly switching be- m 4D D

tween two states = * ¢. For convenience we shall consider
herec=1. The probabilitiep(o) to find the process in state
o satisfyp(o) +p(—o)=1 and their time-evolution is gov-

erned by

The central idea of the present work is to pass from the
single bistable element to a set of coupled bistable elements
by extending the two-state model of McNamara and Wiesen-
feld. To this end we consider a chain of two-state elements
: N N that for convenience is taken to be of infinite length. If the
p(0)==p(=)=W(=a)p(~0o)=W(o)p(a), (1) elements interact, the simple gain-loss balafigehas to be
where W(o) denotes the rate of the transition— —o. modified to describe the evolution of the set of probabilities
These rates must be extracted from the precise dynamics p{o,t) to find the chain in a particular configuratiom
hand. To build a theory of stochastic resonance they were=( .. .,04_1,0¢,0k+1, - - - ) attime t. Introducing a for-
assumed to be approximately given [dy0] mal operatoi~, defined for any functiorf (o) by F.f(oy)
=f(—oy), the new gain-loss balance reads

W(o-)zg[l—oﬁ cogwt+ ¢)] @) L B
P()=2 (Fim )Wi(ow)p(0). (6)

with & being the small parameter of the theory. Obviously, at

this level the periodic modulation of the bistable system with

(angulaj frequencyw and phasep is taken into account by T

the cosine term only. terpreted as the transition probabilitig§o,t|og,ty) of a

This simple model allows us to calculate the long-timeMarkovian process with infinitely many discrete compo-
limit of the power spectrum of the random telegraph proces§ents. The statistics of the process is fully determined by Eq.
averaged over a uniformly distributed phage The spec- (6).
trum consists of a continuous part and function at modu- To introduce interactions we assume that the transition
lation frequencyw. The continuous part of the spectrum is rates(2) of an element depend on the states of its next neigh-
the Lorentzian of the unperturbed process times a frequencyzors. A simple choice for this coupling controlled by a pa-
dependent prefactor. The latter is close to 1 and governs tH@metery is
modulation-induced transfer of broadband power to the
peak in the spectrum.

From this spectrum McNamara and Wiesenfeld obtained
their central theoretical result with respect to stochastic reso-
nance: An exact analytical expression for the signal-to-nois&vhere W(o;) is the McNamara-Wiesenfeld rai@). With
ratio (SNR) of the two-state process. This SNR is defined agpositive y, neighboring elements prefer to be in the same
the ratio of the weight of theS function to the continuous state, whereas they tend to be in opposite statgdsfnega-
part of the spectrum at modulation frequency. In view of thetive. Both tendencies grow with growing coupling strength
present work we will neglect the signal-induced suppressiofy|. To avoid negative transition ratég|<1 has to be re-
of the continuous part of the spectrum and consider theuired. We note that the assumed type of coupling is thus
linear-response approximation of the McNamara-Wiesenfeldble to model ferromagnetic-type interactions for which a
result with respect to the small parameterDoing so, one coupling-induced improvement of the performance of sto-
finds for the SNR chastic resonators was found[iB] and[8]. For positivey,

With the initial conditionp(ato) = 8,,., thep(a.t) are in-

Wi(07)=W(oy)| 1= 2 (07 s+ o D)ar|, (D
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the present model is particularly close to the model simulated- «y exp(—1/T) with properly scaled temperaturg. This

in [8], since both are linear arrays of next-neighbor-couplediependence is typical for many rate proceqde€s. An ap-
elements. For convenience we shall often use the terms fepropriate temperature dependenceaofs also necessary to
romagnetic or antiferromagnetic coupling instead of cou+turn the elements into stochastic resonators for vanishing
pling with positive or negativey. coupling. For simplicityag=1 is considered.

Of course, other types of transition ratés could be The prototype system we are looking for is thus specified
considered as well. The advantage of the present choice s/ Egs.(6) and(7) together with
that most of the relevant stochastic properties of the resulting
model are already known. They were studied by Glauber, 1 2]
who introduced this model as a stochastic form of the Ising a—exp( - T)’ y=tan!‘( ) o
model [11]. [We note that in the Glauber model the term
S cost+¢) in Eq. (7) is replaced by a general time- , . . .
dependent parameted.] As in the McNamara-Wiesenfeld We emphasize that this system is not an approximation of

model, it is again possible to find an analytical expression fof1€ !Sing system(8) in the same way as the double-well
the SNR in leading order of the modulation parameter SYSt€m(4) is approximated by Eqgl), (2), and(5), respec-

which is the subject of the next section. The respectivdiVely- The devised prototype system appears to capture in a
analysis is essentially an exploitation of Glauber's work. ~ SimPle way the essence of the effect of coupling and forcing
It may be possible to reduce the dynamics of some®D coupled continuous-variable systems such as the double

coupled systems to the two-state model given by Egsand ~ Well _ _ .

(7) and hence to directly employ the SNR formula derived in . 10 motivate this, ledU(o) denote the height of the bar-
the next section. However, this approach is certainly mordi€r to be surmounted in order to escape from statén a
involved than the rate expansi¢®) needed to make use of V€'Y Simple approximation the effect of next-neighbor cou-

the McNamara-Wiesenfeld SNR. We shall not pursue thi®ling and forcing on the barrier height could be modeled as
more general aspect of the model in further detail. Instead we
are interested in devising a simple prototype system that al- AU(oy)=AUg+AUqgd o),
lows us to study the impact of the coupling on the stochastic-
resonance effect. To this end we are looking for simple as- AU, ¢}) =Jo(0s1+ 0k_1) + Hooy COL wt+ ).
sumptions on the dependence of the model parameter,
and § on some noise intensity and signal amplitude, respe
tively. We proceed in two steps.

First, we retain Glauber’s original relation of the present
model to the Ising model given by the Hamiltonian

Ho
=<

T

(12

CCZomparing this to Eq(8) one finds that within this simple
picture the effect of coupling and forcing on the barrier
heights is the same as their effect on the energy levels of the
Ising model.(We note that for coupled double-well systems
the chosen approximation would only hold for weak cou-
H=—JZ akak+l—,uHZ Ok- €S)] pling. For strong coupling the systems may no longer be
K K bistable and the entire concept of a simple-minded two-state
This relation is defined by an assumption on the probability2PProximation breaks down. , _
p(o) to find thekth element in stater, , if all other ele- Within an adiabatic limit and with some noise strength
ments are fixed: In an adiabatic limit tig¢o,) of both mod- € transition rateW(a,) of the barrier system would
els are to be identical. This implies that roughly read

plow)  Wi(—oy) F{_H(Uk)_H(_Uk) © W(o-k)zexr<—%)exp{—Auad(£ak) '

P00 Wla) o kT T T 13
holds, which allows us to establish a relation between th
parameters of both models. One fings-tanh(2/kT) and

S cos(t+ ¢p)=tanhuH/KT), respectively[11]. The role of
the noise intensity is thus played by the temperafuréo
skip unnecessary parameters we lsetl andu=1. In the
present paper we assume tht which shall be referred to
as the signal, is given by

?:rom here rates of the forf7) together with parametef4l)

can be obtained in two steps. First, the factor relateti

is kept as the parameterwith a respective choice afU,.
Second, the factor related U ,44, wWhich describes the
effect of forcing and coupling, is replaced by the respective
term of Eq.(7), which is easier to handle. A connection
between both types of rates is again made by requiring that

H=H, cogwt+ ¢). (100  they lead to identical stationary distributions in the sense of

Eq. (9).
For weak amplitudedH <T this results in6=Hy/T. [In A particular close relation between the Glauber-dynamics
Sec. V we shall also consider periodic signél§) with an  model and the barrier system should thus arise within the
additional noisy backgrounf. regime of quasistatic response. Nevertheless, we shall not

Second, a plausible assumption has to be made on thestrict the following investigation of the simple prototype
temperature dependence of the time-scale parameter system to the quasistatic regime. Whether or not the sug-
which is not affected by requiring E€Q). It is assumed that gested model provides insights that are also relevant to more
it retains the qualitative dependen@e found by McNamara realistic settings and possibly helpful in the design of
and Wiesenfeld for the double-well system, i.ee;  coupled stochastic resonators remains to be seen.
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lI. ANALYTICAL SOLUTIONS The power spectrum of an element is determined from the
average(o(t) o (t+7)). As in [10], its t dependence is
r?moved by averaging ), over a uniformly distributed ini-
Bal phase¢ of the modulation term in Eq.7). Introducing

The aim of this section is to calculate the SNR of the
response of a two-state element embedded into the chain
e o o Tt corlaton nctonGut. ) ()~ (O} Lol
essentially based on Glauber's work. We shall only take ac- ™) {o(t+))]) one finds
count of terms in leading order of the modulation amplitude 9
8. The resulting SNR will then be an extension of the sim- (o) oy (t+7)))g=(Cr(t, 7)) 4+ > cofwt). (18
plified McNamara-Wiesenfeld resui8). At the end of the
section the general result will be applied to the prototyp
system specified by Eq11). In addition to the SNR we shall
also give an analytical expression for the so-called spectr
power amplification(SPA).

Following Glauber, we start by calculating the average

®The second term on the right-hand side contributédunc-

E;[Jon with weight 7g? at signal frequencyw to the (one-
ided power spectrum as defined below. The first term, on
Sthe other hand, forms the continuous part of the spectrum.
; For the purpose of calculating the SNR in leading order of

{o(t)). = From Eq. (6.) one derives d{o/dt= the modulation amplitudes it is sufficient to approximate

~2(0xWi (). It results in this continuous part by the power spectrum of the unper-
d(oy) y turbed model. This implies that we neglect any possible
=—(0 )+ =[{(ox_ 1) +{os1)] signal-induced transformation of the continuous part of the
d(at) 2 spectrum as we did to obtain the simplified McNamara-

y Wiesenfeld result3). For the unperturbed model the long-
+|1- E(r"‘ 1kF k1) |6 cofwt+¢) (14)  time correlation functiore(7) is not affected by the average
( )¢ Italso no longer depends on the index of the element.

with r; ;(t) =(oi(t)oj(t)). A closed set of equations for the According to Glauberg(7) reads

(o (t)) is found by linearizing Eq(14) in §. In this case the +oo

ri,j can be taken from the unperturbed modé+(Q). After c(r)=e" 71 > pM (ayl7]) (19)
long times theser;; read r ;=77 with »=y"%(1 n="e

e e 72) [11].

with modified Bessel functionis,(«ay| 7]). Using the relation

The resulting long-time-limit set of equations can be fur-[zo]

ther simplified. Since all elements are forced uniformly, a

particular element cannot be distinguished from any other, v
S C +oo 1 / b
once the initial distribution has been forgotten. Hence, all —ax _
: I 5 T e ™1, (bx)dx . , (20
elements will have identical statistics and the indices in Eq. 0 Ja?—b?\ a+a?-b?
(14) can be skipped. Together with the previous assumption
one obtains which holds for Reg)> —1 and Re&)>|Re(b)|, the power

spectrums(Q) =24 cos@n)c(n)dr is calculated. For the

d{o) one-sided spectrum defined B{Q)=s(Q)+s(—Q) at
gi = «l=yNo)tayl-yscogwttd). (19 ¢ e eventually obtain
Obviously, the long-time dynamics of the avergge is S(0)=4 Re( 1+ 7s; ) 21)
identical to the long-time dynamics of the average of an un- S1(1—7sy)

coupled element with rescaled relaxation rafel — y) and _ — , . .
rescaled modulation terrayI—725. The resulting long- With 1= V(a+iQ)*—(ay)? ands;=ay(a+iQ+s) .

time ||m|t Of the averaged state s|mp|y reads Now the SNR Of the response Of a two-state element em-
bedded into the chain can be calculated, which is the central
(o(1))=q cofwt+ ¢+ i), 16) result of this section. It reads
—12 Q2
° a?(1—y)? ’ a(l-vy)’
For vanishing coupling it reduces to the simplified
whereqs is the response to static signals<£0): McNamara-Wiesenfeld resul8).
In addition to the effect of the coupling on the SNR, we
—s ﬂ 17 also wish to study its impact on thé& peak in the power
Gs= 1-v spectrum. In this regard the spectral power amplification

(SPA) is a convenient measuef., e.g., Jung irf2]). It is
Formally this static response might even excegged 1. We  defined as the ratio of power contained in the signal peaks of
conclude that in this casé is not sufficiently small and the output to input spectrum, i.e., the ratio of the weights of the
linearization of Eq(14) is no longer justified. Later on it will  respectives functions. Because of its dependence on the in-
be shown that this does not amount to a considerable restriput spectrum, the SPA depends on the precise dynamics to
tion. be modeled by the two-state chain.



PRE 58 ANALYTICAL STUDY OF COUPLED TWO-STATE ... 2847
For the prototype system specified by Efj1), the SPA 1.2
readsp=(q/Hy)?, or explicitly
1.0 |
2 -1
w2 EX[{ f) 08 |
anf =
04t
1 43
ps=3 O T |, (29 02 |
wherepy is the SPA of static signals. Obviously, the SPA no 0'(1)0“3 107 107 10° 10’
longer depends on the signal amplitudg. For convenience ®
we also remove thel, dependence of the SNR by consider- s
ing 10
\; —prr
2 Py T
ar ar
Re—d TP (25) 10° |
HES(w) S(w) T
[ py A
For the prototype system the parameigiinvolved in the 10" |
unperturbed spectruif21) simplifies to »=tanhQ/T) [11]. J
Both quantities, SPA23) and rescaled SNR25), only wax
depend on three parameters: temperatdre coupling 10" |
strengthJ, and signal frequencw. Restrictions arise from
Ho<T, which lead to a simple expression fér as well as
from the linearization of Eq(14), which results in an upper 10'3104 107 0 10° 10
bound oné as discussed in connection with Ed.7). To- o

gether one finds

FIG. 1. Features of the unigue maximum of the SpAver
temperaturd and coupling strength shown in dependence on the
signal frequencyw. Plotted are the positionT(,.y, Jmay Of the
It implies that finiteH, places a lower bound ofi and an  maximum, its heighp.,, and the sharpness of the maximum ex-
upper bound onl. However, these restrictions are rather pressed by the curvaturgst and p;;, respectively. In the un-
weak: H, can be made arbitrarily small because its size iscoupled model{=0) the SPA has a maximum & with a height
immaterial within the present weak-signal approximation. po.

We are now in a position to study the impact of the cou-

pling on the response measures SPA and SNR of a sing ; -

resonator embedded intg the chain. This will be the subjec‘ﬁﬁgéw\éﬁl){[}]::sofemsatxritcotigr?, rzzl(gg)dgglsltzl'ﬂﬁzif shoatztitgn
of the following two sections. 1/2<T <1 for any givenw>0. The correspondind.y is
found via EQq.(27). Within the given range oT ,,, One can
easily check on Eq27) thatJ,,.« is indeed always positive.
An inspection of the second derivatives of the SPA finally
reveals that there is a maximum af {(i,Jma- ItS peak
value is implicitly given by

Ho<min(T, T exp(—2J/T)). (26)

IV. COUPLING AND SPECTRAL
POWER AMPLIFICATION

The SPA(23) has a uniqgue maximum over temperatiire
and coupling parametdrfor any time-dependent signél0).
The maximum SPA is obtained for a frequency-dependent
valueJ,,.x, Which is always positive. In other words, a prop-
erly tuned ferromagnetic-type coupling yields the best SPA
performance of the two-state resonator element, which is em-
bedded into the chain.

For our simple model this maximum can be studied ana-
lytically. The partial derivatives of the SPA with respecflio
andJ are found to vanish at paird fa.Jmax) 9iven by

1—Thax

_. 29
Tfna)& 2Tmax_ 1) ( )

Pmax—

From EQs.(27), (28), and(29) the following features of
the maximum can be derived, which are shown in Fig. 1:
Tuning the signal frequency from very large to vanishing

Imax= — (Trmad DIN(2T pan— 1) (27)  small values, the temperatufe,., falls from 1 to 1/2. At the
same time, the coupling strength,.x as well as the peak
and heightp,ax increase from vanishing small to very large val-
2 ues. In addition, an analysis of the curvatupgs and ptt,
w2= ex;{ _ 2 J (2Tma— 1) , (29) both expressed in terms ®f,,,,, shows that the sharpness of
Timax/ Tmax 1= Tmax) the maximum grows as its height increases. This indicates
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FIG. 2. Typical qualitative behavior of the SRAat low signal FIG. 3. Typical qualitative behavior of the SRAat high signal
frequencies for various values of coupling strengttiop) and tem-  frequencies for various values of coupling strengitiop) and tem-
peratureT (bottom). Dashed and dotted curves correspond to SPAperatureT (bottom).
limits discussed towards the end of this section. The dash-dotted
curves represent the SPA at optimal coupling. by Junget al. [5] in a system of globally interacting ele-

ments. The high-frequency behavior, on the other hand,
that to achieve optimal performance the system paraméters where the SPA practically does not increase under coupling,
andJ have to be tuned with increasing accuracy as the signaias not to our knowledge been reported before.
frequency decreases. In both cases Fig. 2 and Fig. 3 clearly demonstrate that at

Figure 1 also includes a comparison to the SPA of arfixed coupling parametel stochastic resonance occurs: The
uncoupled element. At give> 0, this SPA has a maximum SPA has a maximum over temperatir¢hat, unfortunately,

located at a temperatuilg,, implicitly given by cannot be established analytically. Figurébdttom) shows
that while ferromagnetic coupling improves the SPA at any
w2=exp( _ 3) To (30) fixed temperaturd, this improvement is lost if the coupling
To/1-Ty becomes too strong. There is thus an optimal coupling

strengthl,,(T) for every given temperature, which can even
on the interval 8<Ty<<1, whereby its peak value is found to pe exactly calculated at any>0. One finds

bep0=(1—T0)/T§. It can be shown from Eq$28) and(30)

that T, always exceed¥,. The fact thatl ., was found to T 10?2 1o o2

be never zero also implies that,,, always exceedgy. JoplT) =% arctamﬁ 1+ = ————\[4+—],
However, looking at Fig. 1 it is obvious that at frequencies 2 292 2a a?

w>1 both compared quantities of the coupled element ap- (31

proach those of the uncoupled one aig, approaches zero.
The coupling-induced increase in the SPA is thus vanishwhich is always positive. Since the SPA does not have a
ingly small at sufficiently high frequencies of the signal.  further extremum oved, it implies that antiferromagnetic
This comparison allows us to distinguish between twocoupling always decreases the SPA. MoreoJgg(T) in-
different types of SPA behavior: At low frequencies the SPAcreases with growing temperatufeand decreases as the
is enhanced under ferromagnetic coupling, whereas at higsignal frequency grows. In Fig. 2, the SPA at the optimal
frequencies it is basically not, although a tiny increase stillcoupling strength is include@ash-dotted curvesin Fig. 3
occurs. Both situations are illustrated at selected frequencidbottom), where the high-frequency SPA is illustrated, the
in Fig. 2 and Fig. 3, respectively. The low-frequency SPAcoupling-induced improvement of the SPA is hardly detect-
exactly reproduces the qualitative effect found analyticallyable and],,(T) is almost zero.



PRE 58 ANALYTICAL STUDY OF COUPLED TWO-STATE ... 2849

Considering the SPA of time-independent signals+1 or —1. Taking now the signal and coupling together,
(w=0) given by Eq.(24), one finds that it has a maximum both effects add up. The tendency to find the elements in the
over temperature for antiferromagnetic couplihg0 only,  state favored by the signal grows and heggend the static
whereby it decreases as the coupling strefditlyrows. For  SPA grow compared to the uncoupled case.

J=0 the SPA increases with increasidgas well as with With antiferromagnetic coupling, on the other hand,
decreasingr. It formally diverges forT—0 andJ—, re-  neighboring elements prefer to be in opposite states. This
spectively. In both cases the weak-signal lirf@6) breaks counteracts the effect of the signal and leads to a decrease in
down. the SPA.

In general, the SPA23) is given by its static valug24) Finally, the decrease of the static SPA with growing tem-
times a dynamical factor (£d?) ~* [cf. Eq.(16)]. Hered is  perature directly follows from Eq9). There the imbalance
the ratiod= w/[ a(1— 7y)] of signal frequency to long-time in the distribution of probability between the two states,
relaxation rate, which also governs the phase shift Eq.  which depending on the view taken either differ in energy or
(16). With growingd the elements gradually lose their abil- barrier height, decreases as the system heats up: The mean
ity to follow the signal: The SPA weakens and the phasgesponseys weakens due to increasing fluctuations.
shift grows. This effect occurs, for example, if the signal
frequency w increases. Subsequently, the SPA decreases
with growing .

The impact ofd is also responsible for the occurrence of  The investigation of the SNR presented here basically re-
stochastic resonance and optimal coupling in the SPA. Heries on numerical evaluations of E(5). An explicit calcu-

a decrease of the long-time relaxation ratd — y) plays the lation of the power spectrun2l) already yields a rather
crucial role: The element’s dynamics slows downJa®-  complicated expression that does not lend itself to a detailed
creases or a§ decreases. Thus this slow-down occurs when-analytical study.

ever the static SPA grows. Hence, the dynamical factor al- At finite signal frequenciesv>0 the SNR displays the
ways counteracts the static SPA @sor J is changed. same qualitative dependence on temperafuesd coupling
Eventually, the increase of the monotonous static SPA iparameter] as shown for the SPA in Fig. 2 and Fig. 3,
outperformed by the decrease of the dynamical factor, whiclhespectively. At low frequencies the SNR is enhanced under
results in a maximum of the SPA ov&randJ, respectively. ferromagnetic coupling, whereas at high frequencies it is not.
In other words, stochastic resonance and optimal couplin@ue to this close similarity we omitted the respective plots
occur. for the SNR. We note, however, that this similarity is by no

As illustrated in Fig. 2, the SPA can be seen as a transimeans a trivial result, since the spectr(@d) is itself a non-
tion between two limits, the static SPA given by; monotonous function of andJ.
=(gs/Ho)? (d<1, dashed curvésand p./d? (d>1, dotted The low-frequency SNR qualitatively reproduces the SNR
curves, respectively. Since both limits intersectdst 1, i.e.,  behavior found in a chain of next-neighbor-coupled over-
at w=a(1l-1y), the plots nicely show the well-known ap- damped double-well systems simulated8f To our knowl-
proximate matching of time scales at the SPA peak. Thigdge, it is the first analytical confirmation of this behavior.
matching not only occurs over (Fig. 2, top, but overJ We note that this correspondence occurs although the simu-
(Fig. 2, bottom), too. If the signal frequency is changed, the lation in [8] was performed with strong forcing while the
peaks of the SPA shift, whereby all curves share the statipresent model is studied within a weak-signal limit. As for
SPA as a limit. This results in the qualitative frequency de-the SPA, the high-frequency behavior of the SNR has to our
pendence found by McNamara and Wiesenfeld for éhe knowledge not been reported before.
function part of the spectrum of the double-well systetn If the elements are not coupled, their SNB does not

Roughly speaking, an improvement of the SPA under ferdepend on the signal frequency. This was already found in
romagnetic coupling only occurs di 1, where the impact [10], if the signal-induced reduction of the continuous part of
of the static SPA is not yet outperformed by the dynamicatthe spectrum is neglected, as E8) clearly shows. Under
factor. This explains why there is no improvement at signalcoupling this frequency independence of the SNR is lost. For
frequenciesw>1: Since under ferromagnetic couplimdl  ferromagnetic coupling, numerical evaluations of E&5)
—v)<1 holds,d<1 cannot be fulfilled in this case. At predict a decrease of the SNR with growing signal fre-
w=10 (Fig. 3), the SPA is already within the linewidth of quency. Only in the limit of low and high frequencies does
the limit ps/d?=a?(1— y?)(wT) 2, where the impact of the SNR approach constant values. In both cases the SNR
the dynamical factor prevails. This limit is basically given by formula (25) simplifies significantly. One finds
the modulation term in Eq(1l5). Its nonmonotonous tem-

&
tanf — | +1

The static response, which is thus the origin of the T
coupling-induced enhancement of the SPA, can be inter-
preted as follows. Without coupling and for a given fixed
is the same for all elements. Without a signal but under fer-
romagnetic coupling, neighboring elements tend to be in thavhere R, is the simplified McNamara-Wiesenfeld SNR)
same state, too, although they do not favor a particular statef uncoupled element®; is the static SNR whildRr rep-

V. COUPLING AND SIGNAL-TO-NOISE RATIO

2
. (32)

perature dependence is known to be no longer associated
with a matching of time scald<.0]. Rs=Ro(1+ 7)?>=Ry

i i 2 1 2J

signal, the two-state elements prefer to be in the state of Ruyr=RoV1—y*=R, cosh T (33
lowest energy(8). Since the signal is homogeneous, this state
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FIG. 5. Static SNRR for various values of the coupling param-
eterJ. The SNR atl=10 is within the linewidth of the amplifica-
tion limit 4R,.

a second maximum in the SNR ovErmay emerge in this
situation.

The investigation of the impact of the coupling on the
SNR can also be extended to the more natural situation,
where the signal itself is embedded into noise. The question
to address is whether the improvement of the SNR, which
was established for independent internal noise sources, can
still be found with additional coherent external noi§€his
problem does not occur for the SPA, where only the height
of the signal peak is of interest.

To study this case, it is assumed that the input spectrum

FIG. 4. The frequency dependence of the SRRThe upper  consists of the previous signal peak describedmthy3s(Q
dashed curves represent the stqtic SNR. The lower dashed CUIVesy) and a noise paml(Q). Within the weak-signal limit it
show the high-frequency expansion of the SNR. was shown that the signal peak of the input spectrum leads to

a respective peak in the output spectrum at signal frequency
resents the leading-order term of its high-frequency expanenly: No additional peaks at multiples of that frequency oc-
sion. Figure 4 illustrates the typical qualitative behavior ofcur. Therefore, any additional contribution to the continuous
the SNR as a function of the signal frequency. At variouspart of the output spectrum at signal frequency can only arise
frequencies it shows a set of SNR curves over temperature from N(Q=w). In analogy to Eq(16), one finds that this
and coupling parametet, respectively. The dashed curves additional contribution is given byo{Ho)*N(«).
represenR, and Ry, respectively. T_og_ether_ with Iziq.(25), the resulting SNRR,,;s, reads,

The apparent fact that the SNR decreases with growing9@in in units ofHg,
signal frequency implies that its static value cannot be ex-
ceeded at any other signal frequency. Then it follows imme- R . — mq
diately from Eq.(32) that the coupling-induced enhancement " H2S(w) +q2N(w)
of the SNR possesses an upper limit: It cannot be better than
a factor 4. This is a rigorous result for the general chainlt can be expressed in terms of the SRRcf. Eq. (25)] and
model and not limited to the prototype system, where a spethe input SNRR;,,,= 7/N(w) written in units ofHS, re-
cial choice of the parameters was made. Due to the simplicspectively. One finds
ity of the chain model this result may well reflect a limit of a

2

(34

more general nature for the improvement of a weak-signal 1 1+ 1 35
SNR. Figure 5 shows the static SNR over temperaluré Roisy R Rinput @9
differs qualitatively from the static SPA, which according to

Eg. (24) has a monotonous behavior. Rnoisy is thus a steadily growing function of the previously

Turning briefly to antiferromagnetic coupling, one finds studied SNRR, whereby it cannot exceed the input SNR
that the continuous part of the spectrum is insensitive tRinp,i- (The latter meanwhile is a well-known result of linear
the sign of the coupling parametdr Now even the static response theory18], which is in fact the limit we are taking
SNR decreases under coupling. As shown in Fihettom),  here) SinceRj,y, is constant at fixed signal frequenay a
it is found below the high-frequency SNR curve, i.e., coupling-induced increase dR will lead to an increase
here the SNR increases with growing signal frequencyin R, t00. The improvement of the SNR under coupling
Since at medium frequencies again a transition occurs bes thus preserved with external coherent noise. From(Es).
tween both curves similar to the transition in Fig(tdp), @ one can easily show that the maximum enhancement of
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Rnoisy COMpared to the uncoupled chain reaches the pre- VI. SUMMARY

viously found_ factor 4 for vanishing mput noise o_nIy. In this paper we extended the two-state model of sto-
In general, this factor is smaller approaching 1 if the inputchastic resonance introduced by McNamara and Wiesenfeld
noise is so strong that the input SNR and heRggsy 90 to a chain of infinitely many coupled two-state elements,
to zero. which are periodically modulated. The interaction of the el-
At the end we shall make a brief excursion to the collec-ements was chosen in such a way that the chain evolves
tive response of the chain, which was mentioned in the Inaccording to Glauber’s stochastic Ising model. In analogy to
troduction. We consider the following sum, which involves the work of McNamara and Wiesenfeld and based on Glaub-
the states oN elements: er's results, analytical expressions for the signal-to-noise ra-
N tio (SNR) and the spectral power amplificatig8PA) have
been obtained in the limit of weak modulations. Here both
M(t)=2> oi(t). (36)  quantities refer to the response of a single element as part of
' the chain.

) . . o Instead of approximating the dynamics of a particular
It is not difficult to show that the SPA of this new quantity is coupled system by the chain model, we used the latter to
simply N? times the previously studied SP@&3). For the  pyild a prototype system that hopefully captures the essential
SNR, however, this new situation is completely different.features of an entire class of coupled stochastic resonators.
Previously the continuous part of the spectrum was deterfo this end additional assumptions were made on the depen-
mined from the autocorrelation functian(t,7) of an ele- dence of the model parameters on some noise intensity and
ment alone[cf. Eq. (18)]. Now this spectrum will involve signal amplitude, respectively. The prototype system was
cross-correlation contributiors,(t,7) of different elements used to study the effect of the coupling on the response of a
j #k, too. single resonator embedded into the chain.

The new contributions to the continuous part of the spec- The results show that array-enhanced stochastic resonance
trum change the qualitative behavior of the SNR under couoccurs for ferromagnetic-type coupling in SPA and SNR.
pling. We will demonstrate this in the limNl—oc. For this ~ The qualitative features of the effects reproduce those previ-

case Glauber calculated the unperturbed spectfad],  ously found in coupled stochastic resonators. The simplicity

which reads in its one-sided version of the chain model allowed for a detailed analytical investi-
gation of the SPA. For the SNR the observed effects have

4ar1—v? been confirmed analytically. In addition, it was found that
Sw(Q)=N (37)  the improvement of the single-resonator response compared

a?(1- )2+ 0% . ;

to the response of the uncoupled resonator still occurs, if the
. . ) o ) signal is embedded into noise. For the SNR this improve-
Inserting this spectrum into ES), multiplied byN due to  ment was shown to be limited by a factor 4, which is reached

the mentioned increase of the SPA, one finds for the neWor vanishing input noise only. A brief excursion into the

SNR per element collective response dfl resonators, on the other hand, dis-
closed that coupling cannot improve the SNRNifis very
a
Ry=— ayl— 7282 38 large.
M4 4 8 A closer look at the mechanisms behind the effects re-

vealed that in the present model an improvement of the sto-

which, of course, again reduces to the simplified McNamaraehastic resonators under coupling is associated with the re-

Wiesenfeld SNR3) for vanishing coupling. gime of quasistatic response. Since the model studied here

Clearly, the SNR is now a decreasing function of the coupossesses an upper bound to the time scale of its dynamics,
pling parameter and the sign of the latter is no longer importhe desired improvement is essentially restricted to suffi-
tant. Hence, there is a drastic difference in the SNR of singleiently slow signals. For the SPA this improvement is based
and collective response with respect to coupling. Of coursepn a stronger tendency of the two-state elements to align in
we have so far merely investigated the limits of E86), parallel, if signal and ferromagnetic coupling act together,

N=1 andN—x, respectively. We expect that the SNR of compared to this tendency caused by the signal alone. The
the collective response of only a few elements still increaseseason why the improvement of the SPA is lost, if the cou-
under couplind16]. A detailed analysis of the present model pling is too strong, was found to be the slow-down of the
with respect to these collective effects will be the subject ofsystem dynamics under coupling: It simply prevents the

a further investigation. resonators from responding quasistatically.
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